Dalammatriks memiliki aturan tersendiri untuk setiap operasinya. Berikut ini adalah langkah langkah menentukan invers matriks ordo 3x3, diantaranya adalah : 1. Tentukan minor matriks. 2. Tentukan kofaktor matriks. 3. Tentukan adjoin matriks. 4.

Rangkuman Materi MatriksOperasi Aljabar Pada MatriksPenjumlahan dan pengurangan matriksPerkalian matriksTranspos MatriksDeterminanInvers MatriksPenerapan Matriks dalam Sistem Persamaan LinearVideo Pembelajaran Matriks Versi 1 Kelas XIVideo Pembelajaran Matriks Versi 2 Kelas XIContoh Soal Matriks Jawaban +PembahasanRangkuman Materi MatriksOperasi Aljabar Pada MatriksMatriks adalah susunan bilangan-bilangan yang dinyatakan dalam baris dan kolomPenjumlahan dan pengurangan matriksDua buah matriks dapat dijumlahkan atau dikurangi jika memiliki ordo yang sama. Caranya yaitu dengan menjumlahkan atau mengurangi elemen seletak,ContohDiketahui matriks-matriks berikutTentukanA + BPerkalian matriksPerkalian Bilangan Real dengan MatriksJika A sebuah matriks dan k bilangan real maka hasil kali kA adalah matriks yang diperoleh dengan mengalikan masing-masing elemen matriks A dengan matriks berikutTentukanlah 3APerkalian dua matriksMatriks A dapat dikalikan dengan matriks B jika banyak kolom matriks A sama dengan banyak baris matriks B. Hasil kalinya adalah jumlah dari hasil kali elemen-elemen pada baris matriks A dengan elemen-elemen pada kolom matriks SoalDiketahui matriks-matriks berikutTentukan ABTranspos MatriksMatriks A transpos At adalah sebuah matriks yang disusun dengan cara menuliskan baris ke-i matriks A menjadi kolom ke–i dan sifat matriks adalah sebagai berikut.A + Bt = At + BtAtt = AcAt = cAt, c adalah konstantaABt = BtAtDeterminanDeterminan dari matriks A dinotasikan dengan AJika Berordo 2Γ—2, menentukan determinannyaJika berordo 3Γ—3 menggunakan kaidah SarrusInvers MatriksInvers dari matriks A dinotasikan dengan A-1Syarat suatu matriks A mempunyai A = 0, maka matriks A tidak mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks A β‰  0, maka matriks A mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks Matriks dalam Sistem Persamaan LinearJika ada sistem persamaan linear + by = ecx + dy = fSistem persamaan linear tersebut dapat kita tuliskan dalam persamaan matriks matriks ini dapat kita selesaikan dengan menggunakan AX = B, maka X A-1B, dengan A β‰  0Jika XA = B, maka X = BA-1, dengan A β‰  0Video Pembelajaran Matriks Versi 1 Kelas XI Part 1 Part 2 Part 3 Part 4Materi & Contoh Soal Matriks Part 1Materi & Contoh Soal Matriks Part 2Materi & Contoh Soal Matriks Part 3Materi & Contoh Soal Matriks Part 4Video Pembelajaran Matriks Versi 2 Kelas XI Part 1 Part 2 Part 3Belajar Matematika Materi dan Contoh Soal Matriks Part IBelajar Matematika Materi dan Contoh Soal Matriks Part 2Belajar Matematika Materi dan Contoh Soal Matriks Part 3Contoh Soal Matriks Jawaban +PembahasanSoal UN 2009Diketahui matriks A = dan B = .jika A’ adalah transpose matriks A dan AX = B + A’ maka determinan matriks x adalah …463327-33-46PEMBAHASAN Jawaban DSoal SNMPTN DASAR 2011jika A adalah matriks 2Γ—2 yang memenuhi dan maka hasil kali adalah …PEMBAHASAN Jawaban CSoal UN 2009Diketahui 3 A X Bt – C = dengan Bt adalah transpose matriks B, maka nilai a dan b masing-masing adalah …-1 dan 21 dan -2-1 dan -22 dan -1-2 dan 1PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika P = dan = 2 P -1dengan P-1 menyatakan invers matriks P, maka x+y=….01234PEMBAHASAN Jawaban CSoal UN 2008Diketahui matriks P = dan Q = Jika P-1 adalah invers matriks P dan Q-1 adalah invers matrik Q. Maka determinan matriks P -1Q-1 adalah…2231-1-10-223PEMBAHASAN Jawaban BSoal SNMPTN 2010 DASARJika M adalah matriks sehingga , maka determinan matriks M adalah ……1-10-22PEMBAHASAN Jawaban ASoal UN 2004Diketahui matriks S = dan M = . Jika fungsi fS+M, S-M adalah …PEMBAHASAN Jawaban ASoal SNMPTN 2012 DASARJika A = , B = , dan det AB = 12 maka nilai x adalah …-6-3036PEMBAHASAN Jawaban BSoal EBTANAS 2003Nilai x2 + 2xy + y2 yang memenuhi persamaan adalah …13579PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika matriks A = , B = Dan C = memenuhi A + B = Ct dengan Ct transpos matriks C maka 2x+3y = …34567PEMBAHASAN Jawaban CSoal EBTANAS 2000Diketahui A = , B = dan A2 = xA + yB. Nilai xy =…-4-1– Β½1Β½2PEMBAHASAN Jawaban BSoal SNMPTN 2014 DASARJika dengan b2 β‰  2a2 maka x + y = ….-2-1012PEMBAHASAN Jawaban CSoal SNMPTN 2012 DASARJika AB = dan det A =2 maka det BA-1 adalah ….86421PEMBAHASAN Jawaban DSoal SNMPTN 2009 DASARMatriks A = mempunyai hubungan dengan matriks B = . Jika matriks C = dan matriks D mempunyai hubungan serupa seperti A dengan B maka matriks C + D adalah …..PEMBAHASAN Jawaban DSoal UM UGM 2004Jika I matriks satuan dan matriks A = sehingga A2 = pA + ql maka p+q sama dengan ….15105-510PEMBAHASAN Jawaban DSoal Jika diketahui matriks Jika P + Q = R’ dan R’ merupakan transpose matriks R, Tentukan nilai x+y!PEMBAHASAN Diketahui P + Q = C’ Maka diperoleh6 + x = 3, maka x = -33 + x – y = 8, maka 3 + -3 – y = 8 y = -8Sehingga diperoleh x + y = -3 + -8 = -11Soal Diketahui matriks A = dan B = Tentukan matriks 4AB – BA!PEMBAHASAN Soal P = dan Q =. Matriks P – kQ merupakan matriks singular. Tentukan nilai kPEMBAHASAN Karena Matris P-kQ singular maka determinan matriks tersebut bernilai 0 P – 0 Maka k+1k = 12 k2 + k = 12 k2 + k – 12 = 0 k+4k-3 = 0 Maka nilai yang memenuhi adalah k = -4 dan k = 3Soal Diketahui matriks P = Q = , jika nilai deteminannya adalah 4, Tentukan nilai -2x + y – z = 0PEMBAHASAN Menentukan matriks PQ Diketahui determinannya = 4, maka 8-2x+y+z-0=4 Maka -2x+y+z = 0,5Soal Diketahui matriks P = dan Q = . Tentukan invers matriks PQ PQ-1PEMBAHASAN Menentukan PQ Menentukan PQ-1 Soal Tentukan matriks x jika berlaku PEMBAHASAN Jika Maka matriks X X = Soal Tiga buah matriks P = , Q = , R = . Tentukan nilai x yang memenuhi hubungan = RPEMBAHASAN Menentukan P-1 P-1 = invers matriks P P = P-1 = Menentukan nilai X = = R Maka 3x – 10 = 2 3x = 10 + 2 = 12 x = 4Soal Tentukan determinan matriks Q jika memenuhi PEMBAHASAN Jika Sehingga P. Q = R Menentukan salah satu determinan bisa menggunakan rumusan P.Q = R Q = 5.Q = 10 Q = 2Soal Diketahui sistem persamaan , Tentukan nilai 2x – 5y !PEMBAHASAN Sistem persamaan tersebut diubah menjadi PQ = R Q = Menentukan P-1 P-1 = Maka x = -1 dan y = 1, sehingga 2x – 5y = 2-1 – 51 = -7Soal Sebuah garis 3x + 2y = 6 ditranslasikan dengan matriks , dilanjutkan dilatasi dengan pusat O dan faktor 2. Tentukan hasil transformasinya!PEMBAHASAN Diketahui Translasi dengan M1 = Dilatasi pusat O dan faktor skala 2, M2 = Menentukan hasil transformasi Sehingga nilai x dan y x’ = 6+2x y’ = -8 + 2y Maka hasil transformasinya adalah ⇔ 3x’ – 6 + 2y’ + 8 = 12 ⇔ 3x’ + 2y’ = 14 ⇔ 3x + 2y = 14Soal Jika maka x = …12345PEMBAHASAN Log 3a + 1 = 1 3a + 1 = 10 3a = 9 a = 3 log b – 2 = log a b – 7 = a b – 7 = 3 b = 10 xlog a = log b xlog 3 = log 10 xlog 3 = 1 Maka nilai x = 3 Jawaban CSoal Diketahui persamaan matriks . Maka nilai x + y = …3120183541PEMBAHASAN Dari persamaan matriks di atas diperoleh 12 – x = 1 x = 11 -9 – x + y = 0 -9 – 11 + y = 0 y = 20 Maka x + y = 11 + 20 = 31 Jawaban CSoal Terdapat dua buah matriks P dan Q yaitu dan . Jika PQ = QP, maka = …PEMBAHASAN Jawaban CSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …½1-20-Β½PEMBAHASAN x3x – 1 – 2x + 2 = 20 3x2 – x – 2x – 4 = 14 3x2 – 3x – 18 = 0 β†’ dibagi 3 x2 – x – 6 = 0 x – 3x + 2 = 0Maka jumlah semua nilai x yaitu x1 + x2 = 3 + -2 = 1 Jawaban BSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …-124-54PEMBAHASAN Matriks tidak mempunyai invers β†’ A = 0 x2 – 3xx – 4 – x + 12x – 5 = 0 x3 – 4x2 – 3x2 + 12x – 2x2 – 5x + 2x – 5 =0 x3 – 7x2 + 12x – 2x2 – 3x – 5 = 0 x3 – 7x2 + 12x – 2x2 + 3x + 5 = 0 x3 – 9x2 + 15x + 5 = 0 a = 1 , b = -9 , c = 15 , d = 5 Maka hasil kali semua nilai x sebagai berikut Jawaban DSoal Jika . Maka determinan matriks Q adalah …01015-3PEMBAHASAN Maka determinan matriks Q yaitu = 2 x 3 – -1 x – 5 = 6 – 5 = 1 Jawaban CSoal Jika M adalah matriks sehingga , maka determinan matriks M adalah …0-1512PEMBAHASAN Misalkan adalah matriks A adalah matriks BMaka determinan matriks M, sebagai berikut Determinan M . determinan A = determinan B Determinan M . ps – rq = - sp + r – - rq + s Determinan M . ps – rq = - ps – sr – - rq – sr Determinan M . ps – rq = – ps – sr + rq + sr Determinan M . ps – rq = – ps + rq Determinan M = Jawaban BSoal Transpos matriks adalah . Jika AT = A-1 , maka ps – qr = …½ dan – Β½0 dan 1dan –– 1 dan 0-1 dan 1PEMBAHASAN AT = A-1 det AT = det A-1 det AT = det AT . det A = 1 ps – qr2 = 1 ps – qr = Β± 1 Jawaban BSoal matriks Maka nilai determinan dari matriks AB + C = …1014182450PEMBAHASAN Diketahui Maka AB + C sebagai berikut Determinan AB + C = 13 x 18 – 22 x 10 = 234 – 220 = 14 Jawaban BSoal matriks dengan 2A – B = C. Maka nilai x – y = …-14-365PEMBAHASAN Diketahui Matriks 2A – B = C 4 – x = 8 β†’ x = – 4 6 + y = – 4 β†’ y = – 10 Maka x – y = - 4 – - 10 = 6 Jawaban DSoal ini adalah persamaan matriksMaka nilai x + y = …-5PEMBAHASAN Menentukan nilai x sebagai berikut 6 + 8x = 0 8x = – 6 Menentukan nilai y sebagai berikut 4 – 2x + 2y = 0 Maka nilai Jawaban ESoal P yang memenuhi adalah …PEMBAHASAN Jawaban CSoal matriks . Maka nilai x + xy – 2y adalah …61231145PEMBAHASAN Menentukan nilai x 3 + x = 6 x = 3Menentukan nilai y y + 9 = 4x y + 9 = 4 . 3 y + 9 = 12 y = 3Maka x + xy – 2y ⇔ 3 + – 2. 3 ⇔ 3 + 9 – 6 ⇔ 6 Jawaban ASoal . Maka DetPQ + R = …-1925-3014-23PEMBAHASAN Maka DetPQ + R = – = -23 Jawaban ESoal matriks tidak mempunyai invers. Maka nilai x adalah …1-22-43PEMBAHASAN Matriks yang tidak memiliki invers jika determinan matriks tersebut adalah 0. Maka Det P = 0 3x + 26 – 42x – 2 = 0 18x + 12 – 8x + 8 = 0 10x + 20 = 0 10x = – 20 x = – 2 Jawaban B[adinserter block=”3β€³] Penyelesaian: b) Dengan metode Sarrus maka det (Q) = 1.3.7 +0.2.5 + 0.4.6 - 0.3.5 - 1.2.6 - 0.4.7 = 21 + 0 + 0 - 0 - 12 - 0 = 21 - 12 = 9 Cobalah dengan metode Kofaktor Menu. Soal Latihan 1. Tentukan determinan setiap matriks berikut: 2. Jika diketahui matriks pada soal no.1, tentukan det(AB) dan det(BA) Menu. Soal Latihan 3

Kelas 11 SMAMatriksKesamaan Dua MatriksDiketahui matriks A=a b 0 1, B=6 1 -8 7, C=2 -2 1 c, dan D=1 -1 0 2. Jika 2A+B^T=CD dan B^T=transpos matriks B, nilai dari a+b-c= ...Kesamaan Dua MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoHalo friend di sini kita punya soal tentang matriks yang diberikan pada matriks A matriks B seperti ini matriks A dan matriks B jika dua matriks A ditambah dengan matriks B transpose ataupun di sini ditulis sebagai transpose matriks b. Sama saja di sini perhatikan bahwa untuk dua matriks A ditambah matriks B transpose = matriks X matriks b maka nilai dari a kecil B kecil m kecil berarti di sini kita akan mulai terlebih dahulu dari persamaan yang diberikan jadi perhatikan bahwa kita punya dua matriks A ketika kita jumlahkan dengan transpose dari matriks B ini = matriks n x matriks D kita dapat Tuliskan persamaannya disini perhatikan bahwa untuk dua matriks A berarti kita punya adalah 2 dikalikan dengan a kecil B kecil 1 ditambah dengan transpose dari matriks B transpose dari matriks 6187 seperti ini ini akan sama dengan matriks C ditabung adalah 2 min 21 C kecil dikali dengan matriks B yaitu 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya untuk Perkalian antara skalar dengan matriks maknanya adalah untuk setiap elemen pada matriks A ini akan kita kalikan dengan skala tersebut jadi setiap elemen matriks akan kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan a + ini 2 kita kalikan dengan B2 kita kalikan dengan 02 kita kalikan dengan 1 lalu untuk matriks transpose perlu diperhatikan bahwa makna dari matriks transpose adalah kita menukar antara baris dengan kolom jadi yang awalnya matriks B ini kita punya baris pertama nya adalah 61 baris keduanya adalah Min 87 kolom pertamanya adalah 6 Min 8 kolom keduanya adalah 17, maka sekarang kita tukar antara baris dengan kolom nya yang berarti untuk 61 ini yang Pertama kita jadikan sebagai penolong yang pertama maka kita dapat diisikan di sini menjadi ditambahkan 61 nya taruh di sebalik kolom pertama lalu perhatikan bahwa untuk Min 8 ini sebagai barisan kedua kita taruh sebagai kolom yang kedua pada masih transposenya jadi kita punya disini Min 8 lalu di sini 7 makanya kan = perhatikan bahwa untuk matriks t jika kita punya Perkalian antara dua buah matriks kita biarkan terlebih dahulu nanti kita akan kerjakan di bagian bawah supaya tidak terlalu sempit tempatnya jadi sementara kita Tuliskan terlebih dahulu. Sekarang kita kan Sederhanakan bentuk-bentuk yang ini 2 dikali a tentunya 2 a 2 kali B berarti 2 b 2 dikali 002 dikali 1 tentu saja adalah 2 lalu kita jumlahkan dengan tamunya 6 Min 817 akan sama dengan seni kita punya dua min 21 dikali dengan 1 Min 102 bawa disini kita punya penjumlahan antara dua buah matriks. Di manakah yang kita menjumlahkan dua buah matriks berarti sebenarnya kita jumlahkan adalah untuk setiap elemen yang terletak pada posisi yang sama jadi misalkan dua ini kita jumlahkan dengan 62 B kita jumlahkan dengan 80 kita jumlahkan dengan 12 kita jumlahkan 7 akibatnya disini kita mendapati bahwa matriks hasil penjumlahannya adalah berarti kita dapat jumlah karya seni untuk 2 dengan 6 berarti kita punya adalah 2 A + 6 lagu untuk 2 B ditambah dengan 8 berarti menjadi seperti ini Kalau kita punya juga 0 ditambah dengan 1 berarti 0 + 1 x 2 ditambah dengan 7 kita punya adalah 2 ditambah dengan 7 seperti ini ya kan = 2 min 21 kita kalikan dengan 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya kita dapat Sederhanakan bentuk-bentuk yang ini berarti 2 A + 6, b. Biarkan kelompok 2 B + Min 8 sama saja dengan 2 B dikurang 80 + 1 adalah 12 + 7 adalah 9 sekarang barulah kita lakukan Perkalian antara matriks C dengan D perhatikan di sini bahwa kita Buya matriks C baik d ini adalah matriks yang berordo 2 * 2 jadinya jika kita perhatikan ketika kita punya istri memiliki 2 baris dan 2 kolom kita Tuliskan ordo nya adalah 2 * 2 dan matriks D juga ordonya 2 * 2 karena memiliki 2 baris dan 2 kolom syarat perkalian dua buah matriks ini terdefinisi Apabila banyak Kolom pada matriks A = banyak baris pada matriks D yang memang sudah sama berarti perkaliannya terdefinisi dan nanti hasil perkaliannya akan berordo 2 * 2 yang berarti memiliki 2 baris dan 2 kolom juga jadi perlu diperhatikan bahwa berarti kita mulai terlebih dahulu dari baris ke-1 kolom pertama di mana cara mengalikan nya adalah kita mulai terlebih dahulu antara Perkalian antara pertama dengan kolom yang pertama jadi saya perkalian matriks adalah Perkalian antara baris dengan kolom cara mengalirkannya adalah untuk setiap elemennya kita kalikan yang bersangkutan lalu kita jumlah jari Bisa kan gua ini kita kalikan dengan 1 lalu kita jumlahkan min 2 yang dikalikan 60 jadi kita dapati nanti untuk elemen hasil perkalian pada baris pertama dengan kolom pertama adalah 2 dikali 1 ditambah dengan min 2 dan X dengan no telepon untuk elemen yang terletak pada baris ke-1 kolom kedua ini adalah hasil perkalian antara baris pertama dengan kolom yang kedua Ini kita kalikan antara 2 dengan min 1 kalau kita jumlahkan dengan min 2 yang dikalikan dengan 2 begitupun seterusnya kita punya untuk baris kedua dengan kolom pertama Sekarang berarti 1 kita kalikan dengan 10 dari masuknya 1 dari 1 ditambah dengan Sin X no. Terakhir di sini untuk baris kedua kolom ke-2 berarti kita punya 1 dikalikan dengan minus 1 lalu di sini kita punya ditambah dengan yang dikalikan dengan 2 jadi kita udah pasti seperti ini akibatnya kita dapat menuliskan bahwa di sini untuk 2 a ditambah dengan 62 B 8 19 ini akan sama dengan kita punya 2 dikali 1 ditambah dengan min 2 x 0 tentu saja adalah 2 X min 2 ditambah dengan tamunya adalah min 6 x 1 ditambah dengan 0 adalah 1 x min 1 + 2 c adalah 2 C dikurang 1 jadi kita dapati seperti ini Sekarang perlu diperhatikan bahwa kita punya dua matriks ini sama di mana dua matriks dikatakan sama jika dan hanya jika setiap elemen yang terletak pada posisi yang sama dan nilai sama jadi di sini tinggal sama saja 2 KCL + 6 ini harus = 22 B kecil Min 8 hari = Min 61 = 1 sudah benar 9 harusnya = 2 sekon cermin satu akibatnya dari sini kita mendapati bahwa untuk 2 kecil ditambah 6 ini sama dengan 2 berarti untuk 2 kecil kita punya adalah 2 dikurang 6 yaitu Min 4 berarti untuk a ke c adalah 4 dibagi dua yaitu min 2 kalau kita juga punya disini bahwa untuk yang 2 B Min 8 harus = min 6 jadi kita dapat dituliskan seperti ini berarti perhatikan bahwa untuk 2 B min 6 + 8 itu 2 berarti Beni adalah 2 per 2 yaitu 1 + 1 = 1 sudah benar 9. Haruskah = 2 sekon min 1 berarti kita dapat Bilang sama dengan buah kecil min 1 berarti untuk buang air kecil adalah sila ke-1 yaitu 10, maka untuk nilai dari sin kecilnya adalah 10 per 2 yaitu 5 akibatnya Di sini perlu diperhatikan bahwa kita sudah berhasil mendapatkan nilai a b dan c nya kita dapat melanjutkan Namun kita akan hapus bagian supaya tidak terlalu penuh Sehingga dalam kasus ini kita punya bahwa untuk a kecil + B kecil c kecil adalah min 2 + 1 dikurang 5 yang hasilnya adalah minus 6 b. Pilih opsi yang B sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Apayang dapat kamu jelaskan dengan operasi pembagian matriks?, Misalnya diketahui persamaan matriks A.X = B, dengan matriks A dan B matriks yang diketahui. Bagaimana kita menentukan matriks X? (3k+2)x + (2k-3) = 0 selalumempunyai dua akar riil yang berbeda untuk setiap k. 35 seconds ago. tentukan suku pertama,suku ke dua puluh,beda dan
Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks-matriks A=-c 2 1 0, B=4 a b+5 -6, C=-1 3 0 2, dan D=4 b -2 3. Jika 2A-B=CD, maka nilai a+b+c adalah ...Operasi Pada MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videologo Vans di sini kita punya soal tentang matriks diketahui matriks matriks sebagai berikut 6 matriks A matriks B matriks A dan matriks B kita diberikan persamaan untuk dua matriks A dikurang matriks B = matriks A x matriks D kita rayakan nilai dari a kecil B kecil c kecil adalah jadi disini kita mulai terlebih dahulu dari persamaan yang diberikan 2 dikurang matriks B = matriks A yang dikali dengan matriks D berarti dua matriks A adalah 2 dikalikan dengan matriks yaitu min c kecil 210 dikurangi dengan matriks B yaitu 4 A kecil B kecil + 5 yang di sini kita punya min 6 ini akan = matriks c nya kita punya min 1302 dikali dengan matriks d adalah 4 b kecil Min 23 kita mulai terlebih dahulu dari yang paling kiri kita punya Perkalian antara skalar dengan matriks yang berarti setiap elemen pada matriks ya kita kali dengan skalar tersebut terjadi dalam kasus ini setiap elemen pada matriks A kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan mindset kecil 2 dikalikan dengan 22 X dan 12 dikalikan 60 lalu kita kurangi dengan diketahuinya untuk 4 lalu a kecil B kecil dan juga di sini minus 6 perhatikan bawahnya kan = Min 1302 dikalikan dengan 4 kecil Min 23 yang berarti min 2 C kecil Kalau di sini ada 420 harus kita kurangi dengan 4 A kecil B kecil + 5 + min 6 = Min 1302 dikalikan dengan 4 b kecil Min 23 Di sini perlu diperhatikan kita punya pengurangan antara dua buah matriks mana ketika kita mengurangi dua buah matriks berarti kita kurangkan untuk setiap elemen yang terletak pada posisi yang sama jadi min 2 sini kita kurangi dengan 44 ini kita kurangi dengan A2 ini kita kurangi dengan api kecil + 50 ini kita kurangin min 6 dan begitu seterusnya jadi kita punya untuk min 2 si kecil ini kita kurangi dengan 4 lalu 4 ini kita kurangin yang anak kecil 2 kita kurangin dengan b kecil yang ditambah 50 kita kurangin dengan min 6 sehingga ini akan sama dengan Sekarang kita akan lakukan untuk Perkalian antara dua buah matriks perlu diperhatikan bahwa cara mengalikan dua buah matriks adalah kita kalikan antara baris dengan kolom Jadi kita mulai terlebih dahulu baris pertama dari matriks kita kalikan dengan kolom pertama dari matriks t ini akan menghasilkan A terletak pada baris pertama kolom pertama dari matriks hasil perkaliannya cara mengalikan adalah setiap permainan kita kalikan lalu kita jumlahkan Kirimin satu ini kita kalikan 43 ini kita akan Minggu lalu kita jumlahkan keduanya jadi kita punya disini untuk min 1 dikalikan dengan 4 ditambah dengan 3 yang dikalikan 6 min 2 sekarang baris pertama dengan kolom ke-2 berarti 1 kita kalikan dengan b ditambah dengan 3 yang dikalikan dengan 3 sekarang untuk baris kedua dengan kolom yang pertama berarti 0 ini kita kalikan dengan 4 lalu ditambahkan dengan 2 yang mengambil 2 kkal untuk baris kedua dengan kolom ke-2 berarti 0 dikalikan dengan b ini selalu disini kita tambahkan dengan 2 yang dikalikan dengan 34 hitung bawah menjadi minus 2 C kecil yang dikurangi 4 harus diketahui untuk Min A kecil ditambah 4 lalu untuk 2 dikurang 5 berarti sama saja dengan min 3 kamu jangan lupa dikurang kita taruh untuk dirinya di depan berarti min b kecil dikurang 30 dikurang min 6 adalah 6 akan sama dengan Sini kita punya untuk Min 4 ditambah dengan min 6 berarti Min 10 min b kecil ditambah 9 berarti kita dapat diskon seperti ini kalau kita punya juga untuk yang ini 0 ditambah dengan min 4 Min 40 + 6 / 6. Perhatikan bahwa kita mendapati dua matriks ini sama yang berarti untuk setiap elemen yang terletak pada posisi yang sama bernilai sama juga jadi di sini bisa kan min 2 C kecil Min 4 ini harus = Min 10 min akar x + 4 X = min b kecil P 9 min b kecil min 3 X = 46 = 6 ini sudah benar Jadi kita perhatikan kita mulai terlebih dahulu untuk min 2 si kecil dikurang 4 hari = Min 10 jadi kita mendapati persamaannya menjadi seperti ini yang berarti untuk min 2 si kecil adalah Min 10 ditambah dengan 4 yaitu min 6 berarti untuk cek kecilnya adalah minus 6 dibagi minus 2 yaitu 3 selanjutnya untuk minta kecil + 4 hari = min b kecil + 9 jadi kita dapat Tuliskan untuk persamaannya menjadi seperti ini dan ini belum kita ketahui Untuk nilai a dan b nya jadi kita akan lompat itu fokus untuk Mindi kecil min 3 Y = Min 4 jadi kita dapati persamaannya menjadi seperti ini berarti untuk min b kecil adalah Min 4 ditambah 3 yaitu min 1 maka B nyala min 1 + min 1 itu 1 jadi kita dapati nilainya adalah 1 * 6 = 6 sudah benar karena kita sudah dapat dinilai baik berarti kita dapat Tentukan nilai dari kita substitusikan nilai belinya nanti ke sini berarti Min A ditambah dengan 4 = min b min 1 ditambah 9 maka disini perhatikan bahwa untuk anak kecilnya berarti adalah 8 dikurang 4 itu kita punya adalah 4 berarti untuk kecilnya adalah Min 4 dari ini semua kita akan mendapati berarti untuk a kecil + B plastik kecil akan sama dengan berarti Min 4 ditambah 1 ditambah dengan 3 yang nilainya adalah 0. Jadi hasil akhirnya adalah 0 pilih opsi yang c. Sampai jumpa di soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Karenadeterminan matriks C adalah 0, maka dapat diketahui rank matriks C tidak sama dengan 3 (rank(C) β‰  3), artinya rank matriks C tersebut lebih kecil dari 3 (rank(C) < 3). Langkah selanjutnya adalah mendapatkan determinan dari minor-minor matriks C yang berukuran 2Γ—2.

MatematikaALJABAR Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks A=2 -3 -1 0, B=-4 2 1 2, C=-1 0 1 -1 Hasil dari A+BxC adalah ...Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika kita menemukan sel berikut kita lihat di sini ada matriks A B dan C hasil dari matriks A + B * C adalah yang di sini yang kita kerjakan berarti b * c nya dulu yang di dalam kurung berarti b * c = matriks b nya min 4212 x dengan matriks p nya adalah minus 101 dan min 1 = ini langsung di Kali aja satu-satu ke dalam berarti baris pertama kolam pertamanya adalah Min 4 dikali min 1 ditambah 2 dikali 1 = na sekarang yang baris pertama kolom kedua berarti Min 4 dikali 0 ditambah 2 x min 1 jawabannya adalah min 2 Nah di sini sekarang berarti baris kedua kolom pertama 1 x min 1 + 2 * 1 hasilnya adalah 1 dari sini sekarang kolam kedua baris kedua berarti 10 + 2 x min 1 hasilnya adalah minus 2. Nah ini adalah matriks b * c nya Berarti sekarang tinggal di + a + matriks b. * c berarti sama dengan nanya tadi itu adalah 2 - 3 - 10 + matriks b * c nya adalah 6 Min 21 min 2 = tinggal di jumlah aja berarti 2 x + 6 = 8 min 3 + min 2 = min 5 min 1 ditambah 1 = 00 + min 2 = min 2 berarti jawabannya adalah a sampai jumpa di soal berikutnya Diketahuimatriks = @ 2 βˆ’1 1 4 A, =( + 2 3 ),𝑑 = @ 7 2 3 1 A Apabila βˆ’ = 𝑇,maka nilai . =β‹― A. 10 B. 15 C. 20 D. 25 E. 30 C 10 6 Diketahui matriks 𝐾= @ A, = @ 2 0 A, = @ 8 βˆ’2 A, = @ 1 1 A,𝑑 = @ 6 2 A. jika 𝐾 = ,𝐾 = , nilai dari 𝐾 @ βˆ’2 1 A adalah A. @ βˆ’6 5 A B. @ 12
Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksDeterminan Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoHai kok Friends pada soal ini kita diberikan sebuah matriks B kita juga diberitahu bahwa matriks B dikurangi dengan matriks A adalah 2 - 110. Jadi kita bisa gunakan ini untuk mencari matriks A matriks yang diketahuinya kita pindah ke kiri matriks hanya kita pindah ke ruas kanan jadi kita punya B dikurangi dengan 2 min 110 itu adalah matriks a b nya kita masukkan Min 1302 maka kita bisa dapat matriks A nya adalah pengurangan dari yang letaknya sama maka kita punya min 1 dikurangi 2 itu adalah minus 3 untuk elemen sebelah kiri atas lalu untuk elemen sebelah kanan atas adalah 3 - 1 yaitu elemen sebelah kiri bawah 0 dikurangi 1 yaitu min 1 dan elemen sebelah kanan bawah adalah 2 dikurangi 0 yaitu 2 kita dapatkan matriks A Sekarang kita akan mencariinversnya Nah kita tahu bahwa kalau kita punya matriks X = pqrs maka x inversnya adalah 1 per determinan dari matriks X dikali dengan adjoin dari matriks X dimana determinan matriks X itu adalah P Min q r dan adjoin matriks x nya adalah S Min Q Min r p jadi kita bisa mencari matriks A invers dengan rumus ini maka kita punya inversnya adalah 1 per determinannya adalah min 3 dikali 2 dikurangi dengan 4 X min 1 lalu adjoin matriks nya adalah 2 - 41 - 3, maka determinan nya kan kita hitung jadi super minus 2 dikali dengan adjoin nya tadi Cukup Sampai Sini saja karena kita akan cari 2 dikali matriks A invers nya jadi kita kan kali kan matiinvestasi dengan 2 jadi 2 dan 1 - 2 nya itu bisa kita coret jadi kita punya min 1 saja min 1 kita kalikan kedalam adjoin matriks nyata jadi - 24 - 13 Nah sekarang karena yang ditanya adalah determinan dari 2 * matriks A invers determinannya adalah Serong Kanan dikurangi dengan Serong Kiri maka minus 2 dikali 3 dikurangi dengan 4 dikali minus 1 yaitu minus 6 dikurangi 4 yaitu minus 2 maka pilihan yang benar adalah pilihan yang B sampai jumpa pada soal berikut nyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Sifat- Sifat Determinan Matriks. Ada beberapa sifat - sifat determinan matriks, yaitu diantarannya: 1. Apabila semua elemen dari salah satu baris atau kolom sama dengan nol, maka determinan matriks tersebut adalah nol. Perhatikan contoh berikut: Misalkan : 2. Apabila semua elemen dari salah satu baris atau kolom itu sama dengan elemen
Dalam ilmu matematika, Matriks mudah diidentifikasi bentuknya yakni berupa kumpulan angka, karakter, atau simbol yang disusun menyerupai bangun persegi. Sederhananya, matriks merupakan sekelompok bilangan tersusun berdasarkan baris dan kolom yang umumnya dimasukkan ke dalam tanda kurung besar. Cara menghitung matriks adalah dengan memperhatikan dasar-dasar matriks seperti baris, kolom, ordo, elemen dan sebagainya. Komponen Dasar Matriks Matriks dipakai untuk bermacam persoalan matematika melalui persamaan linear sebagai penyelesaian masalah. Matriks dipakai juga dalam ilmu ekonomi untuk mengurai masalah melalui variabel-variabel kompleks. Cara menghitungnya disesuaikan dengan kebutuhan, berdasarkan pada operasi matriks yakni penjumlahan, pengurangan dan perkalian. Berikut adalah komponen dasar matriks Baris, adalah deretan angka/matriks horizontal. Kolom, adalah deretan angka/matriks vertikal. Ordo, adalah ukuran suatu matriks, yakni baris m x kolom n. Elemen, adalah bilangan-bilangan yang terdapat di dalam kurung matriks. Diagonal, adalah komponen pada matriks persegi diagonal utama dan samping Jenis Matriks Sebelum mempelajari cara menghitung matriks, ketahui bahwa ada beragam jenis matriks berdasarkan bentuk yang menunjukan sifat khusus. Apa saja? Matriks baris Matriks yang hanya terbentuk dari satu baris. Matriks kolom Matriks yang hanya terbentuk dari satu kolom. Matriks persegi Matriks dengan jumlah kolom sama dengan jumlah baris. Matriks diagonal Matriks persegi dengan elemen nol. Elemen diagonalnya kecuali nol disebut matriks diagonal. Matriks identitas Matriks persegi dengan elemen pada diagonal utama bernilai 1 dan bernilai 0 pada elemen yang lain. Matriks nol matriks dengan semua elemen bernilai 0. Cara menghitung matriks tidak dapat/tidak perlu dilakukan dilakukan karena selalu bernilai nol 0. Baca juga Pengertian Struktur Organisasi, Fungsi, Jenis dan Faktor Berpengaruh Perhitungan dan Operasi Matriks Ada 3 operasi Matriks yakni penjumlahan, pengurangan dan perkalian. Mengapa matriks tidak bisa dibagi? Karena pembagian antara 1 matriks terhadap matriks yang lain dinyatakan tidak dapat β€œdidefinisikan” dalam matematika. Penjumlahan Matriks Matriks hanya dapat dijumlahkan jika kedua matriks mempunyai ordo sama. Rumus penjumlahan matriks adalah berlaku sama untuk ordo 2Γ—2, 3Γ—3, dan sebagainya Rumus Contoh soal dan jawaban Merujuk pada rumus di atas, diketahui a matriks A elemen baris 1 kolom 1 dijumlahkan dengan e matriks B baris 1 kolom 1, begitu seterusnya. Ini contoh matriks penjumlahan Pengurangan Matriks Sebagaimana penjumlahan, pengurangan Matriks juga hanya dapat terjadi pada ordo yang sama. Rumus pengurangan Matriks untuk ordo 2Γ—2 adalah sebagai berikut Rumus Contoh soal dan jawaban Mengikuti rumus di atas, maka a matriks A elemen baris 1 kolom 1 dikurangi dengan e matriks B baris 1 kolom 1, begitu seterusnya. Ini contoh matriks pengurangan Perkalian Matriks Metode rumus matriks untuk perkalian adalah memasangkan baris dari variabel matriks pertama dengan kolom dari matriks kedua. Nilai dua buah matriks bisa dikalikan hanya jika nilai pada kolom matriks pertama sama dengan jumlah pada baris matriks kedua. Rumus Contoh soal 1 Tentukanlah hasil perkalian dari matriks bilangan A dan B berikut Pembahasan Cara menghitung perkalian dua matriks berukuran masing-masing 2Γ—2 seperti di atas akan menghasilkan matriks berukuran sama. Sebenarnya, proses perkalian matriks ini tidak serumit kelihatannya. Hal ini karena bilangan penyusun matriks berukuran 2Γ—2 hanya memiliki 4 anggota pada tiap matriks. Sehingga, perkalian dapat dilakukan dengan mudah. Contoh soal 2 Tentukanlah hasil matriks perkalian dari bilangan matriks 3Γ—3 di bawah ini Pembahasan Kesimpulan Matriks dioperasikan berdasarkan hukum khusus matriks berdasarkan jumlah kolom, baris dan jenis Matriks. Oleh karena itu, ketika sebuah data ditransformasikan menjadi angka matriks, perhatikan kesinambungan bentuk, elemen dan jenis matriksnya. Jika tidak sesuai, maka matriks tersebut tidak bisa dioperasikan sebagaimana diharapkan. Bila diperhatikan, meski prosesnya sama, perkalian untuk matriks berukuran 3Γ—3 lebih sulit daripada matriks ukuran 2Γ—2. Hal tersebut karena anggota pada matriks 3Γ—3 lebih banyak, yakni sebanyak 9 anggota dalam 3 kolom dan 3 baris. Namun, lebih rumit bukan berarti tidak dapat diselesaikan. Pelajari lebih sering tentang cara menghitung matriks dan contoh-contoh soalnya, demi melatih ketelitian dan memiliki pemahaman yang lebih baik. Kembangkan Dana Sekaligus Berikan Kontribusi Untuk Ekonomi Nasional dengan Melakukan Pendanaan Untuk UKM Bersama Akseleran! Bagi kamu yang ingin membantu mengembangkan usaha kecil dan menengah di Indonesia, P2P Lending dari Akseleran adalah tempatnya. Akseleran menawarkan kesempatan pengembangan dana yang optimal dengan bunga rata-rata 10,5%-12% per tahun dan menggunakan proteksi asuransi 99% dari pokok pinjaman. Tentunya, semua itu dapat kamu mulai hanya dengan Rp100 ribu saja. Yuk! Gunakan kode promo BLOG100 saat mendaftar untuk memulai pengembangan dana awalmu bersama Akseleran. Untuk pertanyaan lebih lanjut dapat menghubungi Customer Service Akseleran di 021 5091-6006 atau email ke [email protected]
Soal1. Tentukan determinan dari matriks. Jawaban: Rumus yang kita akan gunakan untuk mencari nilai determinan yaitu: Misalkan diketahui matriks , maka det B = ad - bc. Dengan demikian det (A)= -2 (16) - 8 (-4) = -32 - (-32) = -32 + 32 = 0. Soal 2. Jika nilai determinan dari matriks adalah -6, nilai a adalah.
Invers matriks merupakan salah satu metode penting sebagai penyelesaian soal-soal matriks dalam Matematika. Istilah-istilah yang sering dikenal dalam materi matriks yaitu, matriks persegi, matriks baris, matriks kolom, matriks nol, matriks diagonal, matriks identitas, matriks skalar, tranpos matriks, dan invers matriks. Hai Quipperian! Apa kabar semuanya? Semoga masih dalam keadaan sehat dan enggak galau, ya karena materi Matematika yang satu ini. Enggak heran makanya kamu mampir ke sini untuk belajar lebih jauh tentang invers matriks, iya kan? Invers matriks adalah salah satu metode penting untuk menyelesaikan soal-soal di dalam sebuah matriks. Bagaimana rumusannya? Soal seperti apa yang dapat diselesaikan dalam bentuk matriks? Untuk menjawab pertanyaan tersebut, Quipper Blog akan mengulasnya dengan memberikan contoh-contoh soal beserta pembahasannya. Tertarik kan, Quipperian? Cusss, kita kepoin! Apa Itu Invers Matriks Berikut ini merupakan tabel dan matriks dari kandungan makanan. Kandungan Makanan Jenis makanan setiap ons K L M Kalsium 30 10 30 Besi 10 10 10 Vitamin 10 30 20 Dari gambar dan tabel diatas, Quipperian dapat melihat jenis tabel kandungan makanan yang terdiri dari variabel kalsium, besi, dan vitamin serta jenis makanan setiap ons-nya. Tabel kandungan tersebut diubah ke dalam bentuk sebuah matriks sehingga akan lebih memudahkan perhitungan variabel tersebut. Pada gambar diatas, terlihat matriks terdiri dari 3 baris dan 3 kolom, sehingga matriks KLM disebut matriks 3 x 3. Oleh sebab itu, matriks adalah susunan bilangan-bilangan berbentuk persegi panjang atau persegi yang tersusun dalam baris dan kolom yang terletak di dalam kurung atau siku. Bilangan dalam kurung dinamakan elemen, unsur, atau komponen matriks. Pada matriks KLM diatas, elemen matriks nya adalah sebagai berikut K= {30, 10, 10}, L{10, 10, 30}, dan M={30, 10, 20}. Sebuah matriks mempunyai sebuah ordo m x n misalnya Am x n A2 x 3, maka ordo dari matriks A adalah 2 x 3. Dimana 2 adalah baris dan 3 adalah kolom. Apabila sebuah matriks ordonya m = n, maka matriks itu dinamakan matriks persegi, sedangkan jika m β‰  n disebut matriks persegi panjang. Ada istilah-istilah yang sering dikenal dalam materi matriks yaitu matriks persegi, matriks baris, matriks kolom, matriks nol, matriks diagonal, matriks identitas, matriks skalar, tranpos matriks, dan invers matriks. Simak di bawah ya penjelasannya! Istilah-istilah dalam Invers Matriks 1. Matriks Persegi Matriks persegi adalah matriks yang jumlah elemen pada baris dan kolom adalah sama. Selain itu, karena bentuknya berupa bujur sangkar, terdapat diagonal utama dan diagonal sekunder pada matriks persegi. Diagonal utama adalah bagian diagonal yang menurun ke bawah contohnya adalah {a11, a22, a33, ………., amn}. Sedangkan diagonal sekunder adalah bagian diagonal yang naik ke atas contohnya adalah {am1, a1n, dll}. 2. Matriks Baris Matriks baris adalah suatu matriks yang hanya mempunyai 1 baris saja, sehingga ordo dari tersebut adalah A1xn . Contoh dari matriks baris tersebut adalah A = [ 2 0 ] dan B = [ 3 -1 5 0 ]. Matriks A adalah matriks baris berordo 1 x 2. Sedangkan matriks B adalah matriks baris berordo 1 x 4. 3. Matriks Kolom Matriks kolom adalah suatu matriks yang hanya mempunyai 1 kolom saja. Matriks kolom adalah matriks yang berordo m x 1. Contoh matriks kolom adalah sebagai berikut Matriks A adalah matriks kolom berordo 3 x 1. Sedangkan matriks B adalah matriks kolom berordo 4 x 1. 4. Matriks Nol Matriks nol adalah matriks yang semua elemennya adalah bilangan nol. Matriks nol dinotasikan sebagai 0mxn . Contoh matriks nol adalah sebagai berikut 5. Matriks Identitas Matriks identitas atau sering disebut matriks satuan adalah matriks yang semua diagonalnya adalah sama yaitu bernilai 1. Simbol dari matriks identitas adalah miring . Contoh dari matriks identitas adalah sebagai berikut 6. Matriks Skalar Matriks skalar adalah matriks yang elemen-elemen diagonalnya bernilai sama. Sehingga a11= a22= ………= amn = k. Nilai k dapat bernilai sembarang. Contoh dari matriks skalar adalah sebagai berikut Matriks A adalah matriks skalar berordo 2. Sedangkan matriks B adalah matriks skalar berordo 3. 7. Transpos Matriks Transpos matriks adalah matriks baru yang diperoleh dengan dengan menukarkan letak baris dan kolom dari matriks sebelumnya. Transpos matriks disimbolkan dengan memberi aksen atau T di bagian atas pada matriks sebelumnya. Contoh A menjadi A’, B menjadi BT. Rumusan transpos matriks adalah sebagai berikut Contoh dari transpos matriks adalah sebagai berikut 8. Invers Matriks Invers matriks adalah sebuah kebalikan invers dari kedua matriks di mana apabila matriks tersebut dikalikan menghasilkan matriks persegi AB = BA = . Simbol dari invers matriks adalah pangkat -1 di atas hurufnya. Contoh matriks B adalah invers matriks A ditulis B = A–1 dan matriks A adalah invers dari matriks B ditulis A = B-1. Matriks A dan B merupakan dua matriks yang saling invers berkebalikan. Invers matriks terdiri dari dua jenis yaitu matriks persegi 2Γ—2 dan matriks 3Γ—3. Invers matriks A berordo 2 dapat langsung kita peroleh dengan cara Tukar elemen-elemen pada diagonal utamanya. Berikan tanda negatif pada elemen-elemen lainnya. Bagilah setiap elemen matriks dengan determinannya. Rumusan dari invers matriks persegi berordo 2 adalah sebagai berikut Jika matriks A = [ a b c d ] dengan determinan A = – maka invers matriks A dirumuskan sebagai berikut Dalam penyelesaian matriks 3 x 3, ada beberapa istilah yang harus kita ketahui yaitu determinan sarrus, minor, kofaktor, dan adjoin. Sebagai contoh apabila terdapat matriks 3 x 3 sebagai berikut A = [ a b c d e f g h i ]maka rumus untuk mencari inversnya adalah sebagai berikut Dari persamaan diatas, ada det A yaitu determinan A dan Adj A yaitu adjoin A, di mana rumus untuk mencari determinan A menggunakan rumus determinan sarrus yaitu sebagai berikut Nilai determinanya sarrusnya menjadi = a x e x + b x f x g – c x d x h – c x e x g – a x f x h – b x d x . Selanjutnya penentuan Adjoin A dapat terlihat dari gambar dibawah ini. Dari gambar terlihat terdapat simbol C kapital, di mana letak nilai C sudah ditranspos dari baris ke kolom. C merupakan singkatan dari kofaktor. Penentuan nilai kofaktor diperoleh dari penentuan nilai minor suatu matriks. Penentuan nilai kofaktor dan minor adalah sebagai berikut Bagaimana Quipperian dengan rumus-rumus di atas? Enggak usah bingung-bingung, cobain dulu nih contoh soal dari Quipper Blog tentang invers matriks 2 x 2 dan invers matriks 3 x 3. Sssttt… Jangan intip jawabannya sebelum kamu jawab sendiri, ya! Contoh Soal Nomor 1 Pembahasan Contoh Soal Nomor 2 Pembahasan Bagaimana Quipperian sudah mulai paham kan materi Matematika yang satu ini? Kalau kamu sudah mulai tertantang untuk mengerjakan soal-soal lainnya, silakan gabung di Quipper Video ya, karena masih banyak soal-soal seru di sana. Selain itu, Quipper Video juga mengulas materi Matematika lainnya secara fun, asyik dan pastinya simple. Sampai jumpa di artikel lainnya, ya! Penulis William Yohanes
Tentukanpersamaan garis singgung pada lingkaran di titik yang diketahui berikut. (x + 2)^(2) + (y βˆ’ 1)^(2) = 20; (0, 5) Luas bayangan depan rumah Pak Hernino jika ditransformasikan oleh matriks ((3 0) (0 1)) sama dengan(ratusan m^(2) ). Koordinat titik maksimum grafik y = - 2 sin 3x +1 adalah A.
g8kd.
  • ll234qlsrk.pages.dev/386
  • ll234qlsrk.pages.dev/222
  • ll234qlsrk.pages.dev/262
  • ll234qlsrk.pages.dev/315
  • ll234qlsrk.pages.dev/297
  • ll234qlsrk.pages.dev/493
  • ll234qlsrk.pages.dev/258
  • ll234qlsrk.pages.dev/334
  • diketahui matriks a 2 0